O.P.Code: 23HS0836 | R23 | H.T.No. |

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Regular Examinations February-2025
DISCRETE MATHEMATICS & GRAPH THEORY
(Common to CSIT, CSE, CIC, CCC, CAL, CSM & CAD)

	(Common to CSIT, CSE, CIC, CCC, CAI, CSM & CAD)			
Time: 3 Hours		Max. Marks: 70		ks: 70
	<u>PART-A</u>			
	(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a Construct a tuth table for $p \land (q \lor \neg q)$.	CO ₁	L3	2M
	b Translate the statement in symbolic form "Some rationals are not reals".	CO1	L2	2M
	c State Pigeon hole principle.	CO ₂	L1	2M
	d Define Monoid with example.	CO ₂	L1	2M
	e State Binomial theorem.	CO3	L1	2M
	f Define permutation with example.	CO3	L1	2M
		CO5	L3	2M
		CO5		
	h Solve $a_n - a_{n-1} - 2$ $a_{n-2} = 0$.		L3	2M
	i Define Bipartite graph with example.	CO6	L1	2M
	j State Euler formulae for plannar graph.	CO ₆	L1	2M
	PART-B			
	(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I			
2	a What is Principal disjunctive normal form? Obtain the Principal	CO1	L1	5M
_	disjunctive normal form of $\neg(p \rightarrow (q \land r))$.	001		5111
	b Prove that $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology.	CO1	L1	5M
	OR	001		CIVI
3	a Show that $R \land (P \lor Q)$ is a valid conclusion from the premises.	CO1	L2	5M
	$P \vee Q, Q \rightarrow R, P \rightarrow M \text{ and } \sim M.$	001	~~	OIVI
	b Show that $(\exists x)M(x)$ follows logically from the premises	CO ₁	L2	5M
	$(\forall x)H(x) \to M(x)$ and $(\exists x)H(x)$.	001		SIVI
	UNIT-II			
4	<u> </u>	CO2	Τ 1	53.A
4	a Define Lattices and write the properties of Lattices.	CO2	L1	5M
	b If $A = \{1,2,3,5,30\}$ and R is the divisibility relation, prove that (A, R)	CO ₂	L3	5M
	is a Latticesbut not a distributive Lattices.			
_	OR	002	т 2	73 4
5	a Prove that the set Z of all integers with the binary operation *, defined	CO ₂	L3	5M
	as $(a * b) = a + b + 1, \forall a, b \in Z$ is an abelian group.	CO.	т.	
	b Show that the set $G = \{1, 2, 3, 4, 5, 6\}$ forms a finite abelian group	CO ₂	L2	5M
	with respect to the multiplication modulo 7.			
	UNIT-III			
6	a How many different license plates are there that involve 1,2 or 3	CO ₃	L2	5M
	letters followed by 4 digits?			
	b Find the number of arrangements of the letters in the word	CO ₃	L3	5M
	STATISTICS.			
	OR			
7	a Enumerate the number of non-negative integral solutions to the	CO ₃	L1	6M
	inequality $x_1 + x_2 + x_3 + x_4 \le 19$.			
	b Find the co-efficient of x^2y^4 in $(x-2y)^6$.	CO ₄	L3	4M

łΠ	N	IT	<u>'-T</u>	V
-10	T 4.			₩.

- 8 a Solve $a_n = a_{n-1} + 2a_{n-2}$, for $n \ge 2$ with the initial conditions CO5 L3 5M $a_0 = 1$ and $a_1 = 1$.
 - b Find an explicit formula for the Fibonacci numbers.

 CO5 L3 5M
- Solve $a_n 5a_{n-1} + 6a_{n-2} = 2^n$, $n \ge 2$ with the initial CO5 L3 10M conditions $a_0 = 1$ and $a_1 = 1$. Using generating functions.
- 10 a Show that the two graphs shown below are isomorphic? CO6 L2 5M

- b Show that in any graph the number of odd degree vertices is even. CO6 L2 5M
- 11 a Define planar graph and Hamiltonian graph with examples
 b Find the number of vertices, number of edges and the number of regions for the following graph and verify the Euler"s formula

 CO6 L1 5M

 CO6 L3 5M

*** END ***